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a b s t r a c t

In this article several approaches for the exploratory analysis of two-dimensional chromatographic sig-
nals (fingerprints) are presented. Their usefulness is illustrated on experimental chromatographic data
obtained from high performance liquid chromatography using the photodiode-array detector (HPLC-
eywords:
v coefficient
omparing data tables
hromatographic fingerprints
lignment
PLC-DAD
ARAFAC
ARAFAC2

DAD). Among the methods discussed are principal component analysis (PCA), hierarchical clustering
methods and several N-way techniques such as PARAFAC, PARAFAC2 and Tucker3. In addition to the
N-way methods, other approaches that allow for comparing samples represented by two-dimensional fin-
gerprints are also presented (the Rv coefficient, the STATIS approach and ‘fuzzy’ variants of the similarity
matrix). Exploratory analysis of the HPLC-DAD data with peak shifts is also discussed.

© 2010 Elsevier B.V. All rights reserved.
. Introduction

In recent years, much attention has been paid to the charac-
erisation of samples using their chemical fingerprints [1]. Such a
trategy assumes that instrumental signals capture unique infor-
ation about the chemical composition of samples and can later

e used for the purpose of their comparative analysis. This approach
s also referred to as non-targeted analysis in contrast to tar-
eted analysis where samples are described by a few carefully
elected and quantified chemical components. However, when
omplex samples are analysed, e.g. herbal extracts, environmental
nd biological samples, the targeted approach has a rather lim-
ted application because it requires chemical standards and some
reliminary knowledge about the systems being studied.

Non-targeted analysis has the advantage of presenting a com-
rehensive view of the composition of the sample represented by
certain type of instrumental signals, and requires no chemical

tandards in order to compare samples. Therefore, the chemical
ngerprints enable exploration of the system being analysed at

he chemical level. Once the chemical fingerprints are appropri-
tely registered, an exploratory analysis follows in order to display
he differences among the samples and to identify certain signal
omponents contributing most to these differences.

∗ Corresponding author.
E-mail address: mdaszyk@us.edu.pl (M. Daszykowski).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.08.032
There are several important aspects that have to be addressed
appropriately in order to obtain valuable information from chro-
matographic fingerprints. The first is related to maximising the
information content of the chromatographic fingerprints and their
quality by appropriate sample preparation and identifying the opti-
mal chromatographic conditions.

The second aspect is related to data exploration and successful
extraction of the chemically relevant information. Different chemo-
metric techniques are available to compare and explore a collection
of chromatographic signals. In this arsenal there are also meth-
ods well suited for correcting certain deficiencies in instrumental
signals including noise and background levels as well as for syn-
chronizing time axes in chromatograms (the alignment techniques
[2]). Regardless of the type of chromatographic data at hand, their
exploration is considered to be the first step in the discovery of
knowledge.

Projection methods [3] such as e.g. principal components
analysis (PCA) and clustering approaches (including hierarchical
clustering techniques) are widely used to explore chromatographic
data containing one-dimensional HPLC chromatograms. In fact,
due to the large dimensionality of such data, projection methods
are highly valued because they help to summarise data structures
using only a few latent variables. As illustrated in [4] it is also

possible to adopt the same strategy for an exploratory analysis of
chromatographic data constituted by data tables obtained when a
multi-channel detector is used (e.g. the photo-diode array detector,
DAD). They are constituted by measurements of a certain property
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egistered for two different features, for instance at a given reten-
ion time and wavelength, and are referred to as two-dimensional
ignals. Their collection is viewed as a three-way data array, X,
ith the dimensions (the number of spectral channels × the number

f sampling points on retention time axis × the number of samples)
epresenting three data modes.

The major goal of this article is to present different chemomet-
ic approaches for the exploratory analysis of chromatographic data
epresented by a set of two-dimensional chromatographic signals.
he article will be limited to the exploratory analysis of HPLC-
AD signals only, but the approach discussed in this article can
lso be used for exploring other types of two-dimensional signals
s well. Our interest in the HPLC-DAD method arises mostly from
ts popularity as a fingerprinting technique and its wide availabil-
ty.

In the theory section we will review some basic chemometric
ethods for exploratory data analysis. Later, their applications to

wo-dimensional HPLC-DAD signals will be presented. We will also
ocus on dealing with the issue of peak shifts in two-dimensional
PLC-DAD signals and will indicate some possible ways to process

hem in the context of their exploratory analysis.

. Theory

Projection and clustering techniques, individually or in a
ombination, are usually used for the exploratory analysis of
hromatographic signals. In the literature many examples of
xploratory analysis on a set of one-dimensional signals can be
ound. Applications of these methods to two-dimensional chro-

atographic signals are reported less frequently. Depending on the
ype of chromatographic signal and the presence or absence of peak
hifts, different exploratory approaches are available (see Table 1).

Regardless of the type of chromatographic signals (one- or two-
imensional signals) when peak shifts are observed they require
pecial pre-treatment (synchronisation of their time axes [2]) or
pecial approaches to data exploration that are unaffected by peak
hifts. Such exploratory approaches involve the construction of a
imilarity matrix that is insensitive to peak shifts (as described
n the following section) used as input to projection and/or hier-
rchical clustering techniques. It is assumed that peak shifts in
wo-dimensional chromatographic signals are only observed along
ime dimension.

.1. Scoring similarities among samples represented by
wo-dimensional signals

Similarities between two samples i and j, characterised by two-
imensional chromatographic signals, X and Y respectively, can be
resented as a similarity matrix, with elements sij:

ij = vec(X)T · vec(Y) (1)
here ‘vec(·)’ is the column-wise unfolding of X and Y.
The S matrix is a square, positive and semi-definite matrix with

iagonal elements larger than or equal to zero. The entries of the
imilarity matrix can be additionally normalised to remove scaling

able 1
verview of different approaches used for exploration of two-dimensional chromatograp

Type of chromatographic signals Require prior signal alignment

One-dimensional Similarity matrix

PCA
Clustering methods

Two-dimensional Tucker3
PARAFAC
nta 83 (2011) 1088–1097 1089

effects by dividing each element sij by the square root of the product
of sii·sjj.

When peak shifts in signals along the time dimension are
present, the similarities have to be scored differently. To compare
samples characterised by two-dimensional chromatographic sig-
nals, X and Y, the so-called Rv coefficient can be used as follows
[5]:

Rvij = trace(XXTYYT)√
trace(XXT) · trace(YYT)

(2)

where XXT and YYT are the Gram matrices for two samples
described by two-dimensional chromatographic signals X and Y
with the dimensions the number of spectral channels × the number
of sampling points on retention time axis, ‘trace(·)’ denotes the sum of
the squared diagonal elements of a matrix. (Remark: in general, the
Gram matrix is a square, symmetric and positive matrix obtained
either as XXT or XTX).

Values of the Rv coefficient are between zero and one indicat-
ing no similarity and the highest similarity between two samples,
respectively.

In addition to the already presented measures of similarity
between two-dimensional chromatographic signals, another con-
cept exists that can be used when peak shifts are present. It relies
on the construction of a so-called ‘fuzzy’ similarity matrix obtained
for ‘blurred’ or ‘semi-blurred’ data representations: U*U*T and UU*T.
Rows of matrix U contain unfolded two-dimensional signals, and
the asterisk denotes that they were ‘blurred’ along their time
dimension. The signal’s ‘blurring’ is achieved by averaging the val-
ues of its elements within a window of a specified size along the
time dimension (for more details see Ref. [6]).

To enable a straightforward visualisation of the inter-sample
similarities, the constructed similarity matrices according to
description provided in this section may be further explored using
PCA and/or hierarchical clustering methods.

2.2. Projection methods

There are many different projection methods which can be used
for exploring the structure of multidimensional [3] and multi-mode
[7] chemical data. Principal component analysis (PCA) [8] plays a
fundamental role among these methods. Its aim is to compress a
collection of one-dimensional chromatographic signal data into a
few new variables, constructed as linear combinations of the origi-
nal variables maximising the description of the data variance. PCA
is a decomposition model and presents data matrix X as a product
of scores and loadings matrices.

PARAFAC [9], PARAFAC2 [10,11] and Tucker3 [12] methods,
known in the literature as the N-way methods, are similar in spirit
to PCA. Their aim is to facilitate the exploration of a set of two-
dimensional signals (a three-way data array, X, with three data

modes A, B, and C denoting for the HPLC dimension, the DAD data
spectral dimension and samples, respectively). Like PCA, the N-way
approaches decompose three-way data into three sets of latent
variables A, B and C for each data mode, called loadings. Each of the
above-mentioned models is constructed to maximise the descrip-

hic signals.

No-alignment approach

Similarity matrix insensitive to peak shifts: Gram matrix,
Rv coefficient, ‘fuzzy’ similarity matrix
PCA on Rv or ‘fuzzy’ similarity matrix
Clustering on similarity matrix insensitive to peak shifts
STATIS
PARAFAC2
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4. Results and discussion

In this section, we will discuss some issues related to the
exploratory analysis of two-dimensional chromatographic finger-
prints, namely the HPLC-DAD fingerprints.

-0.5 0 0.5 1 1.5

-0.5

0

0.5

1

1.5

PC 1

(a)

(b)

P
C

 2

1A 1B 
1C 1D 

2A 

2B 
2C 

3A 3B 

3C 3D 

4A 4B 
4C 

5A 5B 
5C 
5D 

6A 6B 6C 6D 

7A 
7B 7C 

8A 
8B 8C 8D 

9A 9B 
9C 
9D 

10A
10B
10C

11A11B
11C11D

12A
12B12C12D

13A13B13C
14A14B14C14D

15A
15B
15C15D

16A16B16C
16D

17A17B17C

18A18B
18C
18D

19A19B19C19D20A20B

20C

21A21B21C
21D

22A22B22C22D
23A23B

23C
23D

24A24B
24C24D

-0.1 0 0.1 0.2 0.3 0.4 0.5
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

loadings on PC1

lo
ad

in
gs

 o
n 

P
C

2

20.92

22.00

13.09
090 M. Daszykowski, B. Walcza

ion of the data variance. Depending on the method applied, the
umber of factors in each data mode may differ. In PARAFAC and
ARAFAC2 models the same number of factors is extracted for each
ata mode in contrast to the Tucker3 model where a different num-
er of factors in each data mode is allowed. To achieve a good
ompromise between a model’s complexity and the amount of vari-
nce it explains, the number of model factors has to be optimised
7] as well as applying a suitable model. In general, the PARAFAC
nd Tucker3 models are used for exploring HPLC-DAD data when
etention shifts are negligible or when the time axes of signals are
ynchronised prior to the construction of the N-way model. The
ARAFAC model is relatively simple, but it may describe data vari-
nce insufficiently due to the equal number of loadings in each data
ode. The Tucker3 model is more flexible in this respect. When data

eak shifts are observed in the HPLC-DAD, each data slab can be rep-
esented as a Gram matrix. It is constructed as a cross-product of
he data matrix in such a way that the dimension corresponding to
etention time ‘disappears’. This is done in PARAFAC2 approach.

If the N-way model describes a substantial part of the data
ariability, the so-called C-loadings summarise similarities among
ndividual samples well. Additionally, they can be clustered with
he hierarchical clustering methods to summarise information con-
ained in a few C-loadings.

STATIS [13], like PARAFAC, PARAFAC2 and Tucker3, can also be
sed to handle three-dimensional data arrays. The relation of those
ethods to STATIS has been described in [13]. STATIS does not con-

truct a typical three-way model, but uncovers similarities among
amples represented by two-dimensional chromatographic signals
n a compromise plot. The compromise in STATIS is obtained as the
eighted sum of cross-product matrices constructed for individ-
al samples of the dimensions the number of spectral channels × the
umber of spectral channels. A detailed description of this method

s provided in [13].
Other approaches to exploratory analysis are necessary when

eak shifts are present in two-dimensional signals. For instance,
t is possible to replace the original representation of a two-
imensional signal, X, with a Gram-like matrix XXT, where
he problematic time dimension ‘disappears’, as is exploited in
ARAFAC2. STATIS has properties similar to PARAFAC2 in handling
wo-dimensional signals with peak shifts. A quick comparison of
wo-dimensional signals is also possible with the similarity matri-
es insensitive to peak shifts (e.g. containing the Rv coefficients,
fuzzy’ similarity matrix) and visualising these similarities on a PCA
core plot and/or dendrogram.

.3. Hierarchical clustering methods

The purpose of hierarchical clustering methods is to group
imilar samples [14] and to visualise these similarities. The sim-
larity matrix or PCA score space or C-loadings space from N-way
echniques can be used as input data for clustering. Clustering of
amples is achieved through a stepwise procedure where at each
tep the two most similar clusters (according to a certain similarity
easure, e.g. Euclidean distance, correlation coefficient, etc.) are

oined. In this way, a hierarchy of sample similarities is established
nd displayed as a dendrogram. A sequence of joined samples is
isted along the horizontal axis of the dendrogram, whereas the
ertical axis provides information about similarities among the
amples. Samples grouped in the lowest dendrogram branches
re the most similar. Hierarchical clustering methods differ with
espect to the linkage principle applied. Among the most popu-

ar are single linkage (the linkage distance is equal to the shortest
istance observed between points of two clusters), complete link-
ge (the linkage distance is equal to the furthest distance observed
etween points of two clusters) and the Ward’s method (the link-
ge distance is equal to the minimal increase of information loss in
anta 83 (2011) 1088–1097

terms of sum of squares criterion). A comprehensive overview of
different clustering approaches is provided in [15].

3. Data set

For illustrative purposes, a collection of 89 HPLC-DAD signals
(metabolite profiles of St. John’s wort) will be used. Samples of
St. John’s wort were obtained from commercial suppliers in Africa,
Asia, Europe and North America. All samples were analysed using
an HPLC system, equipped with a photo-diode array detector (DAD)
with two eluents as a mobile phase with a linear gradient: an A
eluent (acetonitrile:water 5:95 + 0.1% COOH) and a B eluent (ace-
tonitrile:water 95:5 + 0.1% HCOOH). At each retention time (549
sampling points from 12 to 23.7 min in steps of 1.32 s), a spectrum
was registered every 3 nm from 260 to 548 nm. The final chromato-
graphic data contains 89 two-dimensional HPLC-DAD fingerprints
with the dimensions (97 × 549) obtained for 24 samples for which
a different number of replicates is available. The replicate samples
are denoted with capital letters from A to D. A detailed description
of the data set is given in [4], and the data set is available from [16].
Fig. 1. (a) Score plot of one-dimensional chromatograms—the total spectra chro-
matograms of 89 HPLC-DAD fingerprints of St. John’s wort extracts (two first
principal components) with indicated sample number (1–24) and replicate (from A
to D), and (b) corresponding loading plot where variables with the largest absolute
contribution to a given PC (certain retention times) are indicated.
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.1. Exploring a set of signals with negligible peak shifts

For the sake of presentation, a relatively simple approach of han-
ling two-dimensional HPLC-DAD signals with no peak shifts will
e presented. Any two-dimensional chromatographic signals can
e transformed into one-dimensional signals, for instance by sum-
ing or averaging signal intensities. Although this approach may

ead to a great reduction in data, often due to the large size of cer-
ain type of signals, this step may be required prior to their further
nalysis [17]. A simpler data representation is more convenient to
rocess and often allows for general conclusions to be drawn about
imilarities among samples, for instance by applying PCA. In Fig. 1a
projection of 24 samples and their replicated (A–D) in the space

f two PCs is shown. The two PCs explain more than 86.24% of
he total data variance and their projection is accompanied by a
orresponding loading plot (Fig. 1b).

When the structure of a data set is summarised effectively by
few principal components, PCs (the PCA model explains a large
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ig. 2. (a) Single linkage dendrogram of 89 St. John’s wort extracts represented by 6 PCs
imilarity measure, and b) chromatographic profiles of replicates of two samples: 17 (a r
gure legend, the reader is referred to the web version of the article.)
nta 83 (2011) 1088–1097 1091

part of the variability of the data), frequently low-dimensional pro-
jections of PCs uncover interesting data structures. A score plot
allows similarities among data samples to be studied, whereas a
loading plot provides information about the contributions of indi-
vidual variables to a given principal component. A simultaneous
analysis of both the score and loading plot allows the contri-
bution of original variables (chromatographic peaks eluting at a
certain retention time) to be attributed to the observed pattern
of samples on the score plot. The largest differences among sam-
ples were revealed along PC1 (see Fig. 1a and b). For samples nos.
3, 6, and 15 a relatively high concentration of quercitine, elut-
ing at around 20.9 min, was observed, whereas rutine, eluting at
around 13.0 min, was present at a relatively low concentration. The

unique character of sample no. 17 with respect to the remaining
samples is explained by the loading values on the PC2. This sam-
ple has a relatively high content of biapigenine, eluting at around
22 min, whereas it contains relatively low amounts of quercitine
and rutine.
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(explaining above 96.95% of total data variance) with the Euclidean distance as a
ed line) and 23 (a blue line). (For interpretation of the references to colour in this
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When the PCA compression is somewhat less efficient, several
Cs are often required to explain a substantial part of the data vari-
nce, and thus a large number of score plots have to be evaluated
imultaneously. To quickly gain an insight into the data structure
ummarised by a few of the PCs, hierarchical clustering methods
an be used with the PCs as input variables. Hierarchical clus-
ering methods present a hierarchy of sample similarities in the
orm of a dendrogram (also called a tree) the interpretation of
hich is relatively intuitive. In Fig. 2a a single linkage dendrogram
ith the Euclidean distance as a similarity measure is presented.

t was constructed by clustering samples in the space of the first
ix PCs explaining more than 96.95% of the total data variance. The
ifferences between certain groups of samples are explained by
he analysis of the corresponding signals of certain samples. For
nstance, in Fig. 2b replicates of samples no. 17 and no. 23 are pre-

ented. It is apparent that the largest quantitative differences are
haracteristic for chromatographic peaks eluting at ca. 13.1, 13.7,
4.3, 14.7, 19.4, 20.9, and 22.0 min. Some of these peaks were iden-
ified and correspond to particular chemical substances present in
t. John’s wort samples as described in [4].

ig. 3. (a) Colour map of the Rv coefficients for 89 St. John’s wort extracts represented
endrogram with (1 − Rv)-similarity measure.
anta 83 (2011) 1088–1097

Another approach to exploring a collection of two-dimensional
HPLC-DAD signals is to study the similarity matrices obtained from
the unfolded individual two-dimensional signals or scoring similar-
ities among individual data tables with the Rv coefficient (see Eq.
(2)). Regardless of the similarity measure applied, the final results
are presented as a positive and square matrix, known as a similarity
matrix, S, with the dimensions (samples × samples). The similarity
matrix can also be presented as a heat map or a colour map. Each
pixel of a colour map represents a similarity between the i-th and
the j-th sample, and the intensity of colour is proportional to the
similarity level.

In Fig. 3a, an example colour map presenting the Rv coefficients
for the HPLC-DAD data is shown. An element of the colour map,
representing a similarity between two samples, has a certain colour
assigned from a colour scale and proportional to the Rv value. Low

similarity between samples is represented by dark blue colour,
whereas high similarity by intensive red, as indicated by a colour
bar in Fig. 3a.

To quickly evaluate the information content of this similarity
matrix PCA analysis is a straightforward option (as illustrated later

by the two-dimensional HPLC-DAD signals and (b) corresponding single linkage
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n) as is hierarchical clustering. Since any hierarchical cluster-
ng technique works on the similarity matrix, the dendrogram is
btained directly from the similarity matrix or its several significant
Cs. Fig. 3b depicts the situation where a single linkage dendrogram
ith 1 − Rvij was used as a similarity measure. In the dendrogram,

ll of the replicate samples are grouped together on low branches.
When chromatographic data are arranged as a three-way data

rray, such a data representation requires the use of N-way meth-
ds for their further exploration. The N-way methods, like PCA,
ct as data dimensionality reduction techniques. They help in
onstructing a set of latent variables (loadings) describing the
elationships among three different data modes. One set of load-
ngs, namely C-loadings, is of particular interest in the context of
xploratory analysis because it expresses differences among sam-
les. Several different N-way techniques can potentially be used

o summarise the structure of a three-way data set, including e.g.
ARAFAC, PARAFAC2, Tucker3 [7] and STATIS [13] approaches. As
xplained in [4], a set of several loadings capturing a large part of the
ata variance obtained from a certain N-way data model can also
e used as input data for hierarchical clustering approaches. As an
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ig. 4. (a) Projection of two first C-mode loadings obtained from PAFARAC2 method of 8
wo-component PARAFAC2 model explained above 95.32% of the total data variance) and
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example, let us present a single-linkage dendrogram (the Euclidean
distance used as a similarity measure) obtained by grouping the C-
loadings of PARAFAC (see Fig. 4a). The two-factor model explained
more than 95.32% of the total data variability.

As indicated in the dendrogram in Fig. 4b, there is a relatively
good agreement between replicates of the samples. Sample no. 17
is unique (located far away from the remaining samples) which
also is confirmed when other dendrograms are studied. This sample
has relatively high contents of substances eluting between 12 and
15 min as well as between 18 and 22.5 min (see Fig. 2b).

4.2. Peak shifts issue

When chromatographic fingerprints are explored the final con-
clusions can be significantly affected by the presence of retention

shifts in the data. These are manifested as a result of unstable exper-
imental conditions over a longer period of the chromatographic
analysis (e.g. the problem of degradation during the stationary
phase—column ageing; using a new solvent purchased from other
vendor for preparing mobile phase, small pH variations, etc. [18]).
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9 St. John’s wort extracts represented by two-dimensional HPLC-DAD signals (the
(b) the corresponding single linkage dendrogram of the two C-mode loadings.
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Two types of approaches are usually used to diminish the
ffects of peak shifts in chromatographic data. For one- and two-
imensional signals, the classic approach relies on the alignment
f the time axes of signals using one of them as a target. For
nstance, correlation optimised warping (COW) [19] is widely used
o account for peak shifts in both types of chromatographic signals.
nce the time axes in signals are synchronised, the above-described
pproaches can be utilised to explore a collection of chromato-
raphic signals. Another possibility is the use of the so-called
o-alignment approaches. These implement a similarity matrix

nsensitive to peak shifts: ‘fuzzy’ similarity matrices (‘blurred’ and
semi-blurred’ variants) or use some kind of Gram matrix (con-
tructed in such a way that the time dimension is removed).

In order to illustrate the performance of these two approaches
et us consider an artificial HPLC-DAD data set with simulated peak
hifts. They were induced by transforming each HPLC-DAD signal
ccording to a simulated warping function (describing a position
f a sampling point on the new time axis). The warping function,
, corresponded to a unimodal Gaussian signal with the number of

ampling points equal to the number of sampling points on the
etention time axis in the original instrumental signal. Initially,
Gaussian peak was placed at sampling point t = 250, the peak

eight h = 1 and the peak width w = 80. The parameters of the Gaus-
ian peak, h, t, and w, were the subject of a random variation in
he course of simulation. A number, drawn from uniform distribu-
ion multiplied by a positive constant, was added to each of these
arameters. Then, a new signal was obtained by transforming each
hromatogram registered at a given spectral channel by the linear
nterpolation of signal intensities to sampling points on the new
ime axis, tn = w(t).

In an ideal case, when no peak shifts are observed between two
hromatographic signals, the sampling points of two signals are
ocated on a line with a unit slope. Otherwise, deviation from this
erfect relationship is observed. In Fig. 5a, a scatter plot of the time
ampling points for original and transformed time axis of signal no.
is presented. The time axis was transformed using a simulated
arping function (see Fig. 5b) leading to changes in the sampling
oints on the retention time axis with respect to the original time
xis. The negative values of the differences (see Fig. 5c) indicate an
arlier elution of the peaks in the transformed signal (a left shift)
ompared to the elution time of the same peaks in the original signal
s demonstrated for sample no. 1. The total spectra chromatograms
i.e. intensities summed over each retention time point) are shown
n Fig. 5d.

Fig. 6a and b present the total spectra chromatograms of all
PLC-DAD samples for the original and the transformed signals,

espectively. In the set of transformed signals, peak shifts are
reatly pronounced, especially around sampling point t = 250 on the
etention time axis, whereas in the original data they are negligible.

In this section, we will compare the performance of different
xploratory approaches (PARAFAC2, STATIS, Rv and ‘blurred’ sim-
larity matrix constructed using window size equal to one) with
espect to their robustness in handling two-dimensional chro-
atographic signals with peak shifts. Peak shifts in signals were

ntroduced as described in the previous section. As the target, the
rojection of original data samples (without peak shifts) obtained
rom a given approach will be used and then compared with the cor-
esponding projection for signals with simulated peak shifts. Two
rojections for each method examined are presented in Fig. 7. They
re derived from the original and the transformed signals (with
imulated peak shifts). A general conclusion for this data is that all

f the methods discussed in this section are relatively insensitive
o peak shifts. This is confirmed by very similar loading projections
or the original and transformed signals. Moreover, very little scat-
er was observed among the replicate samples. In order to quantify
he level of agreement between pairs of projections, the Procrustes
anta 83 (2011) 1088–1097

similarity measure, D (bearing in mind possible scaling and rota-
tion between two projections) was calculated in the space of two
factors as follows:

D =
∑m

i=1

∑2
j=1(f ∗

ij
− fij)

2

∑m
i=1

∑2
j=1(fij − f̄j)

2
(3)

where, f ∗
ij

are scores of the first two factors after the Procrustes

transformation [20] and f̄j is the mean value for the j-th factor.
The smallest differences between projections for the origi-

nal and transformed signals were observed for the Rv approach
(D = 0.0015), then for STATIS (D = 0.0031), PARAFAC2 (D = 0.0054)
and finally for the ‘blurred’ similarity matrix approach (D = 0.1055).
Despite a larger D value for the ‘blurred’ similarity matrix approach,
the two projections look virtually the same with a slightly larger
spread of samples compared to the scatter of points in the pro-
jection of the original signal. It is interesting to note that on
the projections from PARAFAC2 and the ‘fuzzy’ similarity matrix
approach three replicates A, B, and C of sample no. 17 are differ-
ent from the remaining ones; however, on the projection obtained
from the Rv approach their outlying character is less pronounced.
It is also apparent from Fig. 7a–d that depending on the approach
applied to construct a projection, the patterns of samples seem to
be quite different at the first sight. When clusters of replicate sam-
ples are carefully inspected, in general, similar conclusions about
sample similarities can be drawn. For instance, clusters of replicate
samples nos. 3, 6, 12, 15 and 21 are close regardless of the method
used to obtain a projection (cf. Figs. 7).

Another important problem that requires further attention is
associated with the lack of straightforward interpretability of pro-
jections in terms of the original data variables when the data are
represented as some kind of the Gram matrix. Unfortunately, peak
shifts in signals do not allow for a simple data projection in order
to obtain the contributions of the original variables to latent factors
as can be done in the kernel variant of PCA [21].

5. Conclusions

Data exploration is an important step in the discovery of knowl-
edge. When two-dimensional chromatographic HPLC-DAD signals
are explored, they may require a different exploratory treatment
than one-dimensional signals. In certain cases, exploration of the
HPLC-DAD signals requires their prior pre-processing (background
removal and noise suppression—when necessary). A serious obsta-
cle in the exploration of such signals is caused by retention shifts.
If these are negligible in the data being studied, several options are
available. For instance, the two-dimensional signal can be reduced
to one-dimensional signal and treated using different projection
methods including PCA and hierarchical methods (e.g. in the space
of a few significant PCs) later on. The HPLC-DAD signals can also be
explored with the N-way projection methods followed by a further
data hierarchical clustering on a set of C-mode loadings. Interpre-
tation of clusters revealed on low-dimensional projections in terms
of individual variables is achieved by examining PCA loading plots
and chromatographic profiles characteristic for a given cluster of
samples.

The presence of peak shifts in the HPLC-DAD signals have to
either be corrected with the signal alignment methods or the no-
alignment approaches (the Rv coefficients, ‘fuzzy’ similarity matrix,
and PARAFAC2) should be considered.
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